186 research outputs found

    Renal Mitochondrial Cytopathies

    Get PDF
    Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNALEU mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized

    Hereditary spastic paraplegia is a common phenotypic finding in ARG1 deficiency, P5CS deficiency and HHH syndrome: Three inborn errors of metabolism caused by alteration of an interconnected pathway of glutamate and urea cycle metabolism

    Get PDF
    Hereditary Spastic Paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by a progressive rigidity and weakness of the lower limbs, caused by pyramidal tract lesions. As of today, 80 different forms of HSP have been mapped, 64 genes have been cloned, and new forms are constantly being described. HSPs represent an intensively studied field, and the functional understanding of the biochemical and molecular pathogenetic pathways are starting to be elucidated. Recently, dominant and recessive mutations in the ALDH18A1 gene resulting in the deficiency of the encoded enzyme (delta-1-pyrroline-5-carboxylate synthase, P5CS) have been pathogenetically linked to HSP. P5CS is a critical enzyme in the conversion of glutamate to pyrroline-5-carboxylate, an intermediate that enters in the proline biosynthesis and that is connected with the urea cycle. Interestingly, two urea cycle disorders, Argininemia and Hyperornithinemia-Hyperammonemia-Homocitrullinuria syndrome, are clinically characterized by highly penetrant spastic paraplegia. These three diseases represent a peculiar group of HSPs caused by Inborn Errors of Metabolism. Here we comment on these forms, on the common features among them and on the hypotheses for possible shared pathogenetic mechanisms causing the HSP phenotype

    Hereditary Spastic Paraplegia Is a Common Phenotypic Finding in ARG1 Deficiency, P5CS Deficiency and HHH Syndrome: Three Inborn Errors of Metabolism Caused by Alteration of an Interconnected Pathway of Glutamate and Urea Cycle Metabolism

    Get PDF
    Hereditary Spastic Paraplegias (HSPs) are a clinically and genetically heterogeneous group of neurodegenerative disorders characterized by a progressive rigidity and weakness of the lower limbs, caused by pyramidal tract lesions. As of today, 80 different forms of HSP have been mapped, 64 genes have been cloned, and new forms are constantly being described. HSPs represent an intensively studied field, and the functional understanding of the biochemical and molecular pathogenetic pathways are starting to be elucidated. Recently, dominant and recessive mutations in the ALDH18A1 gene resulting in the deficiency of the encoded enzyme (delta-1-pyrroline-5-carboxylate synthase, P5CS) have been pathogenetically linked to HSP. P5CS is a critical enzyme in the conversion of glutamate to pyrroline-5-carboxylate, an intermediate that enters in the proline biosynthesis and that is connected with the urea cycle. Interestingly, two urea cycle disorders, Argininemia and Hyperornithinemia-Hyperammonemia-Homocitrullinuria syndrome, are clinically characterized by highly penetrant spastic paraplegia. These three diseases represent a peculiar group of HSPs caused by Inborn Errors of Metabolism. Here we comment on these forms, on the common features among them and on the hypotheses for possible shared pathogenetic mechanisms causing the HSP phenotype

    Therapeutic Drug Monitoring of Quinidine in Pediatric Patients with KCNT1 Genetic Variants

    Get PDF
    Quinidine (QND) is an old antimalarial drug that was used in the early 20th century as an antiarrhythmic agent. Currently, QND is receiving attention for its use in epilepsy of infancy with migrating focal seizures (EIMFS) due to potassium sodium-activated channel subfamily T member 1 (KCNT1) genetic variants. Here, we report the application of Therapeutic Drug Monitoring (TDM) in pediatric patients carrying KCNT1 genetic variants and orally treated with QND for developmental and epileptic encephalopathies (DEE). We measured plasma levels of QND and its metabolite hydroquinidine (H-QND) by using a validated method based on liquid chromatography coupled with mass spectrometry (LC-MS/MS). Three pediatric patients (median age 4.125 years, IQR 2.375-4.125) received increasing doses of QND. Cardiac toxicity was monitored at every dose change. Reduction in seizure frequency ranged from 50 to 90%. Our results show that QND is a promising drug for pediatric patients with DEE due to KCNT1 genetic variants. Although QND blood levels were significantly lower than the therapeutic range as an anti-arrhythmic drug, patients showed a significant improvement in seizure burden. These data underlie the utility of TDM for QND not only to monitor its toxic effects but also to evaluate possible drug-drug interactions

    Proposed guidelines for the diagnosis and management of methylmalonic and propionic acidemia.

    Get PDF
    Methylmalonic and propionic acidemia (MMA/PA) are inborn errors of metabolism characterized by accumulation of propionic acid and/or methylmalonic acid due to deficiency of methylmalonyl-CoA mutase (MUT) or propionyl-CoA carboxylase (PCC). MMA has an estimated incidence of ~ 1: 50,000 and PA of ~ 1:100\u27000 -150,000. Patients present either shortly after birth with acute deterioration, metabolic acidosis and hyperammonemia or later at any age with a more heterogeneous clinical picture, leading to early death or to severe neurological handicap in many survivors. Mental outcome tends to be worse in PA and late complications include chronic kidney disease almost exclusively in MMA and cardiomyopathy mainly in PA. Except for vitamin B12 responsive forms of MMA the outcome remains poor despite the existence of apparently effective therapy with a low protein diet and carnitine. This may be related to under recognition and delayed diagnosis due to nonspecific clinical presentation and insufficient awareness of health care professionals because of disease rarity

    The Mitochondrial Ornithine Transporter BACTERIAL EXPRESSION, RECONSTITUTION, FUNCTIONAL CHARACTERIZATION, AND TISSUE DISTRIBUTION OF TWO HUMAN ISOFORMS

    Get PDF
    Two isoforms of the human ornithine carrier, ORC1 and ORC2, have been identified by overexpression of the proteins in bacteria and by study of the transport properties of the purified proteins reconstituted into liposomes. Both transport L-isomers of ornithine, lysine, arginine, and citrulline by exchange and by unidirectional mechanisms, and they are inactivated by the same inhibitors. ORC2 has a broader specificity than ORC1, and L- and D-histidine, L-homoarginine, and D-isomers of ornithine, lysine, and ornithine are all substrates. Both proteins are expressed in a wide range of human tissues, but ORC1 is the predominant form. The highest levels of expression of both isoforms are in the liver. Five mutant forms of ORC1 associated with the human disease hyperornithinemia-hyperammonemia-homocitrullinuria were also made. The mutations abolish the transport properties of the protein. In patients with hyperornithinemia-hyperammonemia-homocitrullinuria, isoform ORC2 is unmodified, and its presence compensates partially for defective ORC1

    Clinical relevance of endpoints in clinical trials for acid sphingomyelinase deficiency enzyme replacement therapy

    Get PDF
    Background: Acid sphingomyelinase deficiency (ASMD) also known as Niemann-Pick disease, is a rare lysosomal storage disorder with a diverse disease spectrum that includes slowly progressive, chronic visceral (type B) and neurovisceral forms (intermediate type A/B), in addition to infantile, rapidly progressive fatal neurovisceral disease (type A). Purpose and methods: We review the published evidence on the relevance of splenomegaly and reduced lung diffusion capacity to the clinical burden of chronic forms of ASMD. Targeted literature searches were conducted to identify relevant ASMD and non-ASMD studies for associations between diffusing capacity of the lungs for carbon monoxide (DLCO) and splenomegaly, with clinical parameters and outcome measures. Results: Respiratory disease and organomegaly are primary and independent contributors to mortality, disease burden, and morbidity for patients with chronic ASMD. The degree of splenomegaly correlates with short stature, atherogenic lipid profile, and degree of abnormality of hematologic parameters, and thus may be considered a surrogate marker for bleeding risk, abnormal lipid profiles and possibly, liver fibrosis. Progressive lung disease is a prevalent clinical feature of chronic ASMD, contributing to a decreased quality of life (QoL) and an increased disease burden. In addition, respiratory-related complications are a major cause of mortality in ASMD. Conclusions: The reviewed evidence from ASMD natural history and observational studies supports the use of lung function and spleen volume as clinically meaningful endpoints in ASMD trials that translate into important measures of disease burden for patients

    Diagnosis, treatment, and follow-up of a case of Wolman disease with hemophagocytic lymphohistiocytosis

    Get PDF
    : Wolman Disease (WD) is a severe multi-system metabolic disease due to lysosomal acid lipase (LAL) deficiency. We report on a WD infant who developed an unusual hemophagocytic lymphohistiocytosis (HLH) phenotype related to WD treated with sebelipase alfa. A male baby came to our attention at six months of life for respiratory insufficiency and sepsis, abdominal distension, severe hepatosplenomegaly, diarrhea, and severe growth retardation. HLH was diagnosed and treated with intravenous immunoglobulin, steroids, cyclosporine, broad-spectrum antimicrobial therapy, and finally with the anti-IL-6 drug tocilizumab. WD was suspected for the presence of adrenal calcifications and it was confirmed by LAL enzyme activity and by molecular analysis of LIPA. Plasma oxysterols cholestan-3β,5α,6β-triol (C-triol), and 7-ketocholesterol (7-KC) were markedly increased. Sebelipase alfa was started with progressive amelioration of biochemical and clinical features. The child died from sepsis, 2 months after sebelipase discontinuation requested by parents. Our case shows the importance of an early diagnosis of WD and confirms the difficulty to reach a diagnosis in the HLH phenotype. Sebelipase alpha is an effective treatment for LAL deficiency, also in children affected by WD. Further data are necessary to confirm the utility of measuring plasma c-triol as a biochemical marker of the disease

    Congenital disorders of glycosylation presenting as epileptic encephalopathy with migrating partial seizures in infancy

    Get PDF
    Aim: Epilepsy is commonly observed in congenital disorders of glycosylation (CDG), but no distinctive electroclinical pattern has been recognized. We aimed at identifying a characteristic clinical presentation that might help targeted diagnostic work-up. Method: Based on the initial observation of an index case with CDG and migrating partial seizures, we evaluated 16 additional children with CDG and analysed their clinical course, biochemical, genetic, electrographic, and imaging findings. Results: Four of 17 consecutively observed children with CDG (three females, one male) were first referred between the first and fourth month of life, after early onset of migrating partial seizures. All four patients manifested developmental delay, microcephaly, and multi-organ involvement. Magnetic resonance imaging disclosed cerebral and cerebellar atrophy. Isoelectrofocusing of transferrin, enzymatic studies, and lipid-linked oligosaccharide analysis indicated CDG-I. Genetic testing demonstrated either homozygous or compound heterozygous variants involving the ALG3 gene in patients 1 and 3, the RFT1 gene in patient 2, and the ALG1 gene in patient 4. At last follow-up, patients 1 and 2 were 5 and 31/2 years old. Patients 3 and 4 had died due to respiratory failure during pneumonia and refractory status epilepticus respectively. Interpretation: Children with migrating partial seizures and concomitant multisystem involvement should be investigated for CDG

    Children with special health care needs attending emergency department in Italy: analysis of 3479 cases

    Get PDF
    Background: Although children with special health care needs (CSHCN) represent a minority of the population, they go through more hospitalizations, more admissions to the Emergency Department (ED), and receive a major number of medical prescriptions, in comparison to general pediatric population. Objectives of the study were to determine the reasons for admission to the ED in Italian CSHCN, and to describe the association between patient's demographic data, clinical history, and health services requirements. Methods: Ad hoc web site was created to collect retrospective data of 3479 visits of CSHCN to the ED in 58 Italian Hospitals. Results: Seventy-two percent of patients admitted to ED were affected by a previously defined medical condition. Most of the ED admissions were children with syndromic conditions (54%). 44.2% of the ED admissions were registered during the night-time and/or at the weekends. The hospitalization rate was of 45.6% among patients admitted to the ED. The most common reason for admission to the ED was the presence of respiratory symptoms (26.6%), followed by gastrointestinal problems (21.3%) and neurological disorders (18.2%). 51.4% of the access were classified as 'urgent', with a red/yellow triage code. Considering the type of ED, 61.9% of the visits were conducted at the Pediatric EDs (PedEDs), 33.5% at the Functional EDs (FunEDs) and 4.6% at the Dedicated EDs (DedEDs). Patients with more complex clinical presentation were more likely to be evaluated at the PedEDs. CSHCN underwent to a higher number of medical procedures at the PedEDs, more in comparison to other EDs. Children with medical devices were directed to a PedED quite exclusively when in need for medical attention. Subjects under multiple anti-epileptic drug therapy attended to PedEDs or FunEDs generally. Patients affected by metabolic diseases were more likely to look for medical attention at FunEDs. Syndromic patients mostly required medical attention at the DedEDs. Conclusions: Access of CSHCN to an ED is not infrequent. For this reason, it is fundamental for pediatricians working in any kind of ED to increase their general knowledge about CHSCN and to gain expertise in the management of such patients and their related medical complexity
    corecore